Package ‘corrplot’

August 29, 2016

Type Package
Title Visualization of a Correlation Matrix
Version 0.77
Author Taiyun Wei, Viliam Simko
Suggests seriation, knitr, Cairo, testthat
Maintainer Taiyun Wei <weitaiyun@gmail.com>
Description A graphical display of a correlation matrix or general matrix.
It also contains some algorithms to do matrix reordering.
License GPL
URL https://github.com/taiyun/corrplot
BugReports https://github.com/taiyun/corrplot/issues
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-04-21 08:20:39

R topics documented:
corrplot-package ... 2
colorlegend ... 2
corrMatOrder .. 4
corrplot ... 5
corrplot.mixed ... 13
corrRect ... 14
corrRect.hclust ... 15

Index 17
The corrplot package is a graphical display of a correlation matrix, confidence interval. It also contains some algorithms to do matrix reordering.

The corrplot package is a graphical display of a correlation matrix, confidence interval. It also contains some algorithms to do matrix reordering.

Author(s)

Taiyun Wei
Maintainer: Taiyun Wei <weitaiyun@gmail.com>

References

See Also

The plotcorr function in the ellipse package and corrgram function in the corrgram package has some similarities.
colorlegend

Arguments

colbar: Vector, color of colbar.
labels: Vector, numeric or character to be written.
at: Numeric vector (quantile), the position to put labels. See examples for details.
xlim: See in plot
ylim: See in plot
vertical: Logical, whether the colorlegend is vertical or horizon.
ratio.colbar: The width ratio of colorbar to the total colorlegend (including colorbar, segments and labels).
lim.segment: Vector (quantile) of length 2, the elements should be in [-1,1], giving segments coordinates ranges.
align: Character, alignment type of labels, "l" means left, "c" means center and "r" right.
addlabels: Logical, whether add text label or not.
... Additional arguments, passed to plot

Author(s)

Taiyun Wei

Examples

par(mar = rep(0,4))
plot(0,xlim = c(0,6), ylim = c(-0.5,1.2), type = "n")
colorlegend(rainbow(100), 0:9)
colorlegend(heat.colors(100), LETTERS[1:12], xlim = c(1,2))
colorlegend(terrain.colors(100), 0:9, ratio.colbar = 0.6,
 lim.segment = c(0,0.6), xlim = c(2,3), align = "l")
colorlegend(topo.colors(100), 0:9, lim.segment = c(0,0.6),
 xlim = c(3,4), align = "l", offset = 0)
colorlegend(cm.colors(100),1:5, xlim = c(4,5))
colorlegend(sample(rainbow(12)), labels = LETTERS[1:12],
 at = seq(0.05, 0.95, len = 12), xlim = c(5,6), align = "r")
colorlegend(colbar = grey(1:100 / 100), 1:10, col = "red", align = "l",
 xlim = c(0, 6), ylim = c(-0.5,-0.1), vertical = FALSE)
colorlegend(sample(rainbow(12)),
 labels = LETTERS[1:12], at = seq(0.05, 0.95, len = 12),
 xlim = c(0, 6), ylim = c(1.1, 1.2), vertical = FALSE)
corrMatOrder

Reorder a correlation matrix.

Description

Draw rectangle(s) around the chart of correlation matrix based on the number of each cluster's members.

Usage

corrMatOrder(corr, order = c("AOE", "FPC", "hclust", "alphabet"),
 hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single",
 "average", "mcquitty", "median", "centroid"))

Arguments

corr Correlation matrix to reorder.
order Character, the ordering method for the correlation matrix.

• "AOE" for the angular order of the eigenvectors. It is calculated from the order of the angles, \(a_i \):

\[
 a_i = \tan(e_{i2}/e_{i1}), \text{if } e_{i1} > 0
\]

\[
 a_i = \tan(e_{i2}/e_{i1}) + \pi, \text{otherwise.}
\]

where \(e_1 \) and \(e_2 \) are the largest two eigenvalues of matrix \(\text{corr} \). See Michael Friendly (2002) for details.

• "FPC" for the first principal component order.

• "hclust" for hierarchical clustering order.

• "alphabet" for alphabetical order.

hclust.method Character, the agglomeration method to be used when order is hclust. This should be one of "ward", "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid".

Value

Returns a single permutation vector.

Author(s)

Taiyun Wei

See Also

Package seriation offers more methods to reorder matrices, such as ARSA, BBURCG, BB-WRCG, MDS, TSP, Chen and so forth.
corrplot

Examples

```r
M <- cor(mtcars)

(order.AOE <- corrMatOrder(M, order = "AOE"))
(order.FPC <- corrMatOrder(M, order = "FPC"))
(order.hc <- corrMatOrder(M, order = "hclust"))
(order.hc2 <- corrMatOrder(M, order = "hclust", hclust.method = "ward"))

M.AOE <- M[order.AOE, order.AOE]
M.FPC <- M[order.FPC, order.FPC]
M.hc <- M[order.hc, order.hc]
M.hc2 <- M[order.hc2, order.hc2]

par(ask = TRUE)
corrplot(M)
corrplot(M.AOE)
corrplot(M.FPC)
corrplot(M.hc)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = "ward")
```

Description

A graphical display of a correlation matrix, confidence interval. The details are paid great attention to. It can also visualize a general matrix by setting `is.corr = FALSE`.

Usage

```r
corrplot(corr, method = c("circle", "square", "ellipse", "number", "shade", "color", "pie"), type = c("full", "lower", "upper"), add = FALSE, col = NULL, bg = "white", title = "", is.corr = TRUE, diag = TRUE, outline = FALSE, mar = c(0, 0, 0, 0), addgrid.col = NULL, addCoef.col = NULL, addCoefasPercent = FALSE, order = c("original", "AOE", "FPC", "hclust", "alphabet"), hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average", "mcquitty", "median", "centroid"), addrect = NULL, rect.col = "black", rect.lwd = 2, tl.pos = NULL, tl.cex = 1, tl.col = "red", tl.offset = 0.4, tl.srt = 90,
```
Arguments

corr The correlation matrix to visualize, must be square if order is not "original". For general matrix, please using is.corr = FALSE to convert.

method Character, the visualization method of correlation matrix to be used. Currently, it supports seven methods, named "circle" (default), "square", "ellipse", "number", "pie", "shade" and "color". See examples for details.

The areas of circles or squares show the absolute value of corresponding correlation coefficients. Method "pie" and "shade" came from Michael Friendly's job (with some adjustment about the shade added on), and "ellipse" came from D.J. Murdoch and E.D. Chow's job, see in section References.

type Character, "full" (default), "upper" or "lower", display full matrix, lower triangular or upper triangular matrix.

add Logical, if TRUE, the graph is added to an existing plot, otherwise a new plot is created.

col Vector, the color of glyphs. It is distributed uniformly in cl.lim. If NULL, col will be colorRampPalette(col1(200)), see example about col2.

title Character, title of the graph.

is.corr Logical, whether the input matrix is a correlation matrix or not. We can visualize the non-correlation matrix by setting is.corr = FALSE.

diag Logical, whether display the correlation coefficients on the principal diagonal.

outline Logical or character, whether plot outline of circles, square and ellipse, or the color of these glyphs. If outline is TRUE, the default value is "black".

mar See par.

addgrid.col The color of the grid. If NA, don’t add grid. If NULL the default value is chosen. The default value depends on method, if method is color or shade, the color of the grid is NA, that is, not draw grid; otherwise "grey".

addCoef.col Color of coefficients added on the graph. If NULL (default), add no coefficients.

addCoefasPercent Logic, whether translate coefficients into percentage style for spacesaving.

order Character, the ordering method of the correlation matrix.

• "original" for original order (default).
• "A0E" for the angular order of the eigenvectors.
• "FPC" for the first principal component order.
- "hclust" for the hierarchical clustering order.
- "alphabet" for alphabetical order.

See function `corrMatOrder` for details.

- **hclust.method** Character, the agglomeration method to be used when `order` is hclust. This should be one of "ward", "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid".

- **addrect** Integer, the number of rectangles draws on the graph according to the hierarchical cluster, only valid when `order` is hclust. If NULL (default), then add no rectangles.

- **rect.col** Color for rectangle border(s), only valid when `addrect` is equal or greater than 1.

- **rect.lwd** Numeric, line width for borders for rectangle border(s), only valid when `addrect` is equal or greater than 1.

- **tl.pos** Character or logical, position of text labels. If character, it must be one of "lt", "ld", "td", "d" or "n". "lt" (default if type="full") means left and top, "ld" (default if type="lower") means left and diagonal, "td" (default if type="upper") means top and diagonal(near), "d" means diagonal, "n" means don’t add textlabel.

- **tl.cex** Numeric, for the size of text label (variable names).

- **tl.col** The color of text label.

- **tl.offset** Numeric, for text label, see `text`.

- **tl.srt** Numeric, for text label string rotation in degrees, see `text`.

- **cl.pos** Character or logical, position of color labels; If character, it must be one of "r" (default if type="upper" or "full"), "b" (default if type="lower") or "n", "n" means don’t draw colorlabel.

- **cl.lim** The limits (x1, x2) in the colorlabel.

- **cl.length** Integer, the number of number-text in colorlabel, passed to `colorlegend`. If NULL, cl.length is length(col) + 1 when length(col) <= 20; cl.length is 11 when length(col) > 20

- **cl.cex** Numeric, cex of number-label in colorlabel, passed to `colorlegend`.

- **cl.ratio** Numeric, to justify the width of colorlabel, 0.1~0.2 is suggested.

- **cl.align.text** Character, "1", "c" (default) or "r", for number-label in colorlabel, "1" means left, "c" means center, and "r" means right.

- **cl.offset** Numeric, for number-label in colorlabel, see `text`.

- **number.cex** The cex parameter to send to the call to `text` when writing the correlation coefficients into the plot.

- **number.font** the font parameter to send to the call to `text` when writing the correlation coefficients into the plot.

- **number.digits** indicating the number of decimal digits to be added into the plot. Non-negative integer or NULL, default NULL.
addshade Character for shade style, "negative", "positive" or "all", only valid when method is "shade". If "all", all correlation coefficients' glyph will be shaded; if "positive", only the positive will be shaded; if "negative", only the negative will be shaded. Note: the angle of shade line is different, 45 degrees for positive and 135 degrees for negative.

shade.lwd Numeric, the line width of shade.

shade.col The color of shade line.

p.mat Matrix of p-value, if NULL, arguments sig.level, insig, pch, pch.col, pch.cex is invalid.

sig.level Significant level, if the p-value in p.mat is bigger than sig.level, then the corresponding correlation coefficient is regarded as insignificant.

insig Character, specialized insignificant correlation coefficients, "pch" (default), "p-value", "blank" or "n". If "blank", wipe away the corresponding glyphs; if "p-value", add p-values the corresponding glyphs; if "pch", add characters (see pch for details) on corresponding glyphs; if "n", don't take any measures.

pch Add character on the glyphs of insignificant correlation coefficients(only valid when insig is "pch"). See par.

pch.col The color of pch (only valid when insig is "pch").

pch.cex The cex of pch (only valid when insig is "pch").

plotCI Character, method of plotting confidence interval. If "n", don't plot confidence interval. If "rect", plot rectangles whose upper side means upper bound and lower side means lower bound, respectively, and meanwhile correlation coefficients are also added on the rectangles. If "circle", first plot a circle with the bigger absolute bound, and then plot the smaller. Warning: if the two bounds are the same sign, the smaller circle will be wiped away, thus forming a ring. Method "square" is similar to "circle".

lowCI.mat Matrix of the lower bound of confidence interval.

uppCI.mat Matrix of the upper bound of confidence interval.

na.label Label to be used for rendering NA cells. Default is "?". If "square", then the cell is rendered as a square with the na.label.col color.

na.label.col Color used for rendering NA cells. Default is "black".

... Additional arguments passing to function text for drawing text label.

Details

corrplot function offers flexible ways to visualize correlation matrix, lower and upper bound of confidence interval matrix.

Value

(Invisibly) returns a reordered correlation matrix.

Note

Cairo and cairoDevice packages is strongly recommended to produce high-quality PNG, JPEG, TIFF bitmap files, especially for that method circle, ellipse.
Author(s)
Taiyun Wei (weitaiyun@gmail.com)
Viliam Simko (viliam.simko@gmail.com)

References

See Also
Function `plotcorr` in the `ellipse` package and `corrgram` in the `corrgram` package have some similarities.
Package `seriation` offered more methods to reorder matrices, such as ARSA, BBURCG, BB-WRCG, MDS, TSP, Chen and so forth.

Examples
data(mtcars)
M <- cor(mtcars)
different color series
col1 <- colorRampPalette(c("#F00000", "red", "#FF7F00", "yellow", "white",
 "cyan", "#007FFF", "blue", "#00007F"))
col2 <- colorRampPalette(c("#F00000", "#828282", "#C0C0C0", "#F0F0F0",
 "#D0D0D0", "#E0E0E0", "#F0F0F0", "#E0E0E0",
 "#D0D0D0", "#C0C0C0", "#B0B0B0", "#A0A0A0"))
col3 <- colorRampPalette(c("#F00000", "#007FFF", "#FF7F00", "yellow", "#007FFF",
 "cyan", "#007FFF", "blue", "#00007F"))
col4 <- colorRampPalette(c("#F00000", "#FF7F00", "yellow", "#FF7F00",
 "cyan", "#007FFF", "blue", "#00007F"))
wb <- c("white", "black")

par(ask = TRUE)

different color scale and methods to display corr-matrix
corrplot(M, method = "number", col = "black", cl.pos = "n")
corrplot(M, method = "number")
corrplot(M)
corrplot(M, order = "AOE")
corrplot(M, order = "AOE", addCoef.col = "grey")
corrplot(M, order = "AOE", col = col1(20), cl.length = 21, addCoef.col = "grey")
corrplot(M, order = "AOE", col = col1(10), addCoef.col = "grey")
corrplot(M, order = "AOE", col = col2(20))
corrplot(M, order = "AOE", col = col2(200), addCoef.col = "grey")
corrplot(M, order = "AOE", col = col2(20), cl.length = 21, addCoef.col = "grey")
corrplot(M, order = "AOE", col = col2(10), addCoef.col = "grey")
corrplot(M, order = "AOE", col = col3(100))
corrplot(M, order = "AOE", col = col3(10))

corrplot(M, method="color", col=col1(20), cl.length=21, order = "AOE", addCoef.col="grey")
corrplot(M, method="square", col=col2(200), order = "AOE")
corrplot(M, method="ellipse", col=col1(200), order = "AOE")
corrplot(M, method="shade", col=col3(20), order = "AOE")
corrplot(M, method="pie", order = "AOE")

col=wb
 corrplot(M, col = wb, order="AOE", outline=TRUE, cl.pos="n")
like Chinese wiqi, suit for either on screen or white-black print.
 corrplot(M, col = wb, bg="gold2", order="AOE", cl.pos="n")

mixed methods: It's more efficient if using function "corrplot.mixed"
circle + ellipse
corrplot(M,order="AOE",type="upper",tl.pos="d")
corrplot(M,add=TRUE, type="lower", method="ell",order="AOE",
 diag=FALSE,tl.pos="n", cl.pos="n")

circle + square
 corrplot(M,order="AOE",type="upper",tl.pos="d")
corrplot(M,add=TRUE, type="lower", method="square",order="AOE",
 diag=FALSE,tl.pos="n", cl.pos="n")

circle + colorful number
 corrplot(M,order="AOE",type="upper",tl.pos="d")
corrplot(M,add=TRUE, type="lower", method="number",order="AOE",
 diag=FALSE,tl.pos="n", cl.pos="n")

circle + black number
 corrplot(M,order="AOE",type="upper",tl.pos="tp")
corrplot(M,add=TRUE, type="lower", method="number",order="AOE", col="black",
 diag=FALSE,tl.pos="n", cl.pos="n")

order is hclust and draw rectangles
 corrplot(M, order="hclust")
corrplot(M, order="hclust", addrect = 2)
corrplot(M, order="hclust", addrect = 3, rect.col = "red")
corrplot(M, order="hclust", addrect = 4, rect.col = "blue")
corrplot(M, order="hclust", hclust.method="ward", addrect = 4)

visualize a matrix in [0, 1]
corrplot(abs(M),order="AOE", cl.lim=c(0,1))
corrplot(abs(M),order="AOE", col=col1(20), cl.lim=c(0,1))
corrplot(abs(M),order="AOE", col=col3(200), cl.lim=c(0,1))
visualize a matrix in [-100, 100]
ran <- round(matrix(runif(225, -100, 100), 15))
corrplot(ran, is.corr=FALSE)
corrplot(ran, is.corr=FALSE, cl.lim=c(-100, 100))

text-labels and plot type
corrplot(M, order="AOE", tl.srt=45)
corrplot(M, order="AOE", tl.srt=60)
corrplot(M, order="AOE", tl.pos="d", cl.pos="n")
corrplot(M, order="AOE", diag=FALSE, tl.pos="d")
corrplot(M, order="AOE", type="upper")
corrplot(M, order="AOE", type="upper", diag=FALSE)
corrplot(M, order="AOE", type="lower", cl.pos="b")
corrplot(M, order="AOE", type="lower", cl.pos="b", diag=FALSE)

color-legend
corrplot(M, order="AOE", cl.ratio=0.2, cl.align="l")
corrplot(M, order="AOE", cl.ratio=0.2, cl.align="c")
corrplot(M, order="AOE", cl.ratio=0.2, cl.align="r")
corrplot(M, order="AOE", cl.pos="b")
corrplot(M, order="AOE", cl.pos="b", tl.pos="d")
corrplot(M, order="AOE", cl.pos="n")

deal with missing Values
M2 <- M
diag(M2) = NA
corrplot(M2)
corrplot(M2, na.label = "o")
corrplot(M2, na.label = "NA")

the input matrix is not square
corrplot(M[1:8,1])
corrplot(M[,1:8])
cor.mtest <- function(mat, conf.level = 0.95){
 mat <- as.matrix(mat)
 n <- ncol(mat)
 p.mat <- lowCI.mat <- uppCI.mat <- matrix(NA, n, n)
 diag(p.mat) <- 0
 diag(lowCI.mat) <- diag(uppCI.mat) <- 1
 for(i in 1:(n-1)){
 for(j in (i+1):n){
 tmp <- cor.test(mat[i,], mat[j,], conf.level = conf.level)
corplot

```r
}
return(list(p.mat, lowCI.mat, uppcI.mat))
}

res1 <- cor.mtest(mtcars, 0.95)
res2 <- cor.mtest(mtcars, 0.99)

## specialized the insignificant value according to the significant level
corplot(M, p.mat = res1[[1]], sig.level=0.2)
corplot(M, p.mat = res1[[1]], sig.level=0.05)
corplot(M, p.mat = res1[[1]], sig.level=0.01)
corplot(M, p.mat = res1[[1]], insig = "blank")
corplot(M, p.mat = res1[[1]], insig = "p-value")
corplot(M, p.mat = res1[[1]], insig = "p-value", sig.level=-1) ## add all p-values
corplot(M, p.mat = res1[[1]], order="hclust", insig = "blank", addrect=3)
corplot(M, p.mat = res1[[1]], order="hclust", insig = "pch", addrect=3)

## plot confidence interval(0.95), "square" method
corplot(M, low=res1[[2]], upp=res1[[3]],
plotC="circle", addg="grey20",cl.pos="n")
corplot(M, p.mat = res1[[1]], low=res1[[2]], upp=res1[[3]],
plotC="circle", addg="grey20",cl.pos="n")
corplot(M, low=res1[[2]], upp=res1[[3]],

```

plot confidence interval(0.95), "square" method
corplot(M, low=res1[[2]], upp=res1[[3]],
col=c("white","black"),bg="gold2",order="AOE",
plotCI="circle",cl.pos="n",pch.col="red")
corplot(M, p.mat = res1[[1]], low=res1[[2]], upp=res1[[3]],
col=c("white","black"),bg="gold2",order="AOE",
plotCI="circle",cl.pos="n",pch.col="red")

plot confidence interval(0.95, 0.95, 0.99), "rect" method
corplot(M, low=res1[[2]], upp=res1[[3]], order="hclust",
rect.col="navy", plotC="rect",cl.pos="n")
corplot(M, p.mat = res1[[1]], low=res1[[2]], upp=res1[[3]], order="hclust",
pch.col="red", sig.level = 0.05, addrect=3, rect.col="navy",
plotC="rect",cl.pos="n")
corplot(M, p.mat = res2[[1]], low=res2[[2]], upp=res2[[3]], order="hclust",
pch.col="red", sig.level = 0.01, addrect=3, rect.col="navy",
plotC="rect",cl.pos="n")

```
```
Usage

corrplot.mixed(corr, lower = "number", upper = "circle", tl.pos = c("d", "lt", "n"), diag = c("n", "l", "u"), bg = "white", addgrid.col = "grey", plotCI = c("n", "square", "circle", "rect"), ...)

Arguments

corr | Matrix, the correlation matrix to visualize.
lower | Character, the visualization method for the lower triangular correlation matrix.
upper | Character, the visualization method for the upper triangular correlation matrix.
tl.pos | Character, "lt", "d" or "n" giving position of text labels. "lt" means left and top, "d" means diagonal. If "n", add no textlabel.
diag | Character, for specifying the glyph on the principal diagonal. It is one of "n" (default, draw nothing), "l" (draw the glyphs of lower triangular) or "u" (draw the glyphs of upper triangular).
bg | The background color.
addgrid.col | See the addgrid.col parameter in the function corrplot
plotCI | See the plotCI parameter in the function corrplot
... | Additional arguments for corrplot's wrappers

Author(s)
Taiyun Wei
Examples

```
M <- cor(mtcars)
ord <- corrMatOrder(M, order = "AOE")
M2 <- M[ord, ord]

corrplot.mixed(M2)
corrplot.mixed(M2, lower = "ellipse", upper = "circle")
corrplot.mixed(M2, lower = "square", upper = "circle")
corrplot.mixed(M2, lower = "shade", upper = "circle")
corrplot.mixed(M2, tl.pos = "lt")
corrplot.mixed(M2, tl.pos = "lt", diag = "u")
corrplot.mixed(M2, tl.pos = "lt", diag = "l")
corrplot.mixed(M2, tl.pos = "n")
```

corrRect

Draw rectangle(s) on the correlation matrix graph.

Description

Draw rectangle(s) around the chart of correlation matrix.

Usage

```
corrRect(clus, col = "black", lwd = 2)
```

Arguments

- `clus` Vector, the number of each cluster’s members.
- `col` Color of rectangles.
- `lwd` Line width of rectangles.

Details

`corrRect` needs the number (parameter `clus`) of each cluster’s members, while `corrRect.hclust` can get the members in each cluster based on hierarchical clustering (`hclust`).

Author(s)

Taiyun Wei
Examples

data(mtcars)
M <- cor(mtcars)
corrplot(M, method = "circle", order = "FPC")
corrRect(c(5,6))

(order.hc <- corrMatOrder(M, order = "hclust"))
(order.hc2 <- corrMatOrder(M, order = "hclust", hclust.method = "ward"))
M.hc <- M[order.hc, order.hc]
M.hc2 <- M[order.hc2, order.hc2]

par(ask = TRUE)

same as: corrplot(M, order = "hclust", addrect = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)

same as: corrplot(M, order = "hclust", addrect = 3)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 3)

same as: corrplot(M, order = "hclust", hclust.method = "ward", addrect = 2)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = "ward")

same as: corrplot(M, order = "hclust", hclust.method = "ward", addrect = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 3, method = "ward")

same as: corrplot(M, order = "hclust", hclust.method = "ward", addrect = 4)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 4, method = "ward")

corrRect.hclust Draw rectangles on the correlation matrix graph.

Description

Draw rectangles on the correlation matrix graph based on hierarchical cluster (hclust).

Usage

corrRect.hclust(corr, k = 2, col = "black", lwd = 2,
 method = c("complete", "ward", "ward.D", "ward.D2", "single", "average",
 "mcquitty", "median", "centroid"))
Arguments

corr Correlation matrix for function corrRect.hclust. It use 1-corr as dist in hierarchical clustering (hclust).
k Integer, the number of rectangles drawn on the graph according to the hierarchical cluster, for function corrRect.hclust.
col Color of rectangles.
lwd Line width of rectangles.
method Character, the agglomeration method to be used for hierarchical clustering (hclust). This should be (an unambiguous abbreviation of) one of "ward", "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid".

Author(s)

Taiyun Wei

Examples

data(mtcars)
M <- cor(mtcars)
corrplot(M, method = "circle", order = "FPC")
corrRect(c(5,6))

(order.hc <- corMatOrder(M, order = "hclust"))
(order.hc2 <- corMatOrder(M, order = "hclust", hclust.method = "ward"))
M.hc <- M[order.hc, order.hc]
M.hc2 <- M[order.hc2, order.hc2]

par(ask = TRUE)

same as: corrplot(M, order = "hclust", addrect = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)

same as: corrplot(M, order = "hclust", addrect = 3)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 3)

same as: corrplot(M, order = "hclust", hclust.method = "ward", addrect = 2)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = "ward")

same as: corrplot(M, order = "hclust", hclust.method = "ward", addrect = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 3, method = "ward")

same as: corrplot(M, order = "hclust", hclust.method = "ward", addrect = 4)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 4, method = "ward")
Index

*Topic hplot
 colorlegend, 2
 corrMatOrder, 4
 corrplot, 5
 corrplot-package, 2
 corrRect, 14
 corrRect.hclust, 15

 colorlegend, 2, 7
 corrMatOrder, 4, 7
 corrplot, 5, 13
 corrplot-package, 2
 corrplot.mixed, 13
 corrRect, 14
 corrRect.hclust, 15

 hclust, 7, 14–16

 par, 6, 8
 plot, 3

 text, 7